Wiley

Algorithm AS 139: Maximum Likelihood Estimation in a Linear Model from Confined and Censored Normal Data
Author(s): M. S. Wolynetz
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 2 (1979), pp. 195-206
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346749
Accessed: 05/10/2014 04:19

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

Wiley and Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Royal Statistical Society. Series C (Applied Statistics).

```
\(100 A=20\)
    \(B 1=Y\)
    \(S=Y\)
    \(A_{1}=Y * * 2+1,0\)
    \(A 2=Y\) * \((A)+2,0)\)
    \(B 2=A!+1,0\)
    \(T=A 2 / B 2\)
\(140 A=A+1 . B\)
    \(A D=A!\)
    \(A 1=A 2\)
    \(A 2=Y * A 1+A * A D\)
    \(80=81\)
    \(B 1=82\)
    \(B 2=Y * B!+A * B 0\)
    \(R=S\)
    \(s=1\)
    T A2 / 82
    IF (T) R GT, TOL ,OR. T - S ,GT, TOL) GOTO 140
    FUNC : T
    IF (SGN,LT, D, (a) FUNC:
```



```
    RETURN
    END
```


Algorithm AS 139

Maximum Likelihood Estimation in a Linear Model from Confined and Censored Normal Data

By M. S. Wolynetz
Statistical Research Service, Agriculture Canada

Keywords: NORMAL DISTRIBUTION; REGRESSION; MAXIMUM LIKELIHOOD; CENSORED OBSERVATIONS; CONFINED OBSERVATIONS; INCOMPLETE OBSERVATIONS

Language

ISO Fortran

Description and Purpose

Dempster et al. (1977) proposed an iterative method, called the EM algorithm, for obtaining the maximum likelihood estimates from incomplete data. The procedure consists of alternately estimating the incomplete observations from the current parameter estimates and estimating the parameters from the actual and estimated observations.

Previously, Sampford and Taylor (1959) used this same procedure for finding the maximum likelihood estimates of the location parameters and the scale parameter in a two-factor factorial experiment when the data contain observations censored on the right.

This version of the algorithm explicitly extends their procedure to permit observations to be censored on the left (i.e. only upper bounds for some observations are known); to permit observations to be confined between finite limits (i.e. only finite lower and upper bounds are known for some observations); to handle any fixed effects design matrix $X_{n \times m}$ of rank $m<n$, where n is the number of observations (i.e. any experiment in which there is one homogeneous variance component σ^{2}).

Numerical Method and Theory

In a related paper (Wolynetz, 1979), it was assumed that each observation, before censoring or confining, arose from a $N\left(\mu, \sigma^{2}\right)$ distribution. Here, suppose that the independent observations, before censoring or confining, arise from several Normal distributions with possibly different means but common variance, σ^{2}. More specifically, let the mean of the i th observation y_{i} be μ_{i} and suppose that, prior to censoring or confining,

$$
E\left(y_{i}\right)=\mu_{i}=\sum_{j=1}^{m} x_{i j} \alpha_{j}, \quad i=1,2, \ldots, n
$$

where n is the number of observations. In matrix notation $E(\mathbf{Y})=\mu=X \alpha$ where \mathbf{Y} is the vector of observations $\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\prime}, \mu$ is the vector of means $\left(\mu_{1}, \ldots, \mu_{n}\right)^{\prime}, \alpha$ is the vector of location parameters $\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\prime}$ and X is an $n \times m$ matrix with entries $x_{i j}$. In this parameterization, it is assumed that the matrix $X_{n \times m}$ is of rank $m(m<n)$.

Partition the set $\{i \mid i=1, \ldots, n\}$ into the four sets A, B, C and D defined by Wolynetz (1979). Letting $h_{i}=\left(L_{i}-\mu_{i}\right) / \sigma$ and $H_{i}=\left(U_{i}-\mu_{i}\right) / \sigma$ \{see Wolynetz (1979) for definitions of L_{i}, U_{i}, w_{i}, r, and the functions $\left.Q(x), Q(x, y), S(x), S_{1}(x, y), S_{2}(x, y), T(x), T_{1}(x, y), T_{2}(x, y), T_{3}(x, y)\right\}$, the loglikelihood function of α and σ is

$$
l(\alpha, \sigma)=-r \log \sigma-\frac{1}{2} \sum_{\boldsymbol{A}}\left\{\left(y_{i}-\mu_{i}\right) / \sigma\right\}^{2}+\sum_{B} \log Q\left(-H_{i}\right)+\sum_{\boldsymbol{C}} \log Q\left(h_{i}\right)+\sum_{D} \log Q\left(h_{i}, H_{i}\right) .
$$

The normal equations, evaluated at the maximum likelihood estimates, $\hat{\alpha}$ and $\hat{\sigma}$, are

$$
\begin{align*}
\left.\frac{\partial l(\alpha, \sigma)}{\partial \alpha_{k}}\right|_{\alpha=\alpha, \sigma=\theta}= & \hat{\sigma}^{-2} \sum_{A}\left(y_{i}-\hat{\mu}_{i}\right) x_{i k}-\hat{\sigma}^{-1} \sum_{B} S\left(-\hat{H}_{i}\right) x_{i k} \\
& +\hat{\sigma}^{-1} \sum_{\sigma} S\left(\hat{h}_{i}\right) x_{i k}+\hat{\sigma}^{-1} \sum_{D} S_{1}\left(\hat{h}_{i}, \hat{H}_{i}\right) x_{i k}=0 \tag{1}
\end{align*}
$$

where $k=1,2, \ldots, m$; and

$$
\begin{align*}
\left.\frac{\partial l(\alpha, \sigma)}{\partial \sigma}\right|_{\alpha=\alpha, \sigma=\sigma}= & -r \hat{\sigma}^{-1}+\hat{\sigma}^{-3} \sum_{A}\left(y_{i}-\hat{\mu}_{i}\right)^{2} \\
& -\hat{\sigma}^{-1} \sum_{B} H_{i} S\left(-\hat{H}_{i}\right)+\hat{\sigma}^{-1} \sum_{\sigma} \hat{h}_{i} S\left(\hat{h}_{i}\right)-\sigma^{-1} \sum_{D} S_{2}\left(\hat{h}_{i}, \hat{H}_{i}\right)=0 \tag{2}
\end{align*}
$$

Using equation (3) in Wolynetz (1979), the system of equations in (1) can be rewritten

$$
\sum_{i=1}^{n}\left(\hat{w}_{i}-\sum_{i=1}^{m} \hat{\alpha}_{j} x_{i j}\right) x_{i k}=0, \quad k=1,2, \ldots, m
$$

or, in matrix notation,

$$
\left(X^{\prime} X\right) \hat{\alpha}=X^{\prime} \hat{w}
$$

where \hat{w} is the vector $\left(\hat{w}_{1}, \hat{w}_{2}, \ldots, \hat{w}_{n}\right)^{\prime}$. Since X is assumed to be of rank m,

$$
\begin{equation*}
\hat{\alpha}=\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{w} \tag{3}
\end{equation*}
$$

As in Wolynetz (1979),

$$
\begin{equation*}
\hat{\sigma}^{2}=\sum_{i=1}^{n}\left(\hat{w}_{i}-\hat{\mu}_{i}\right)^{2} /\left\{r+\sum_{B} T\left(-\hat{H}_{i}\right)+\sum_{C} T\left(\hat{h}_{i}\right)+\sum_{D} T_{1}\left(\hat{h}_{i}, \hat{H}_{i}\right)\right\} \tag{4}
\end{equation*}
$$

The iterative procedure for finding $\hat{\alpha}$ and $\hat{\sigma}$ consists of alternately using equation (3) of Wolynetz (1979) to estimate $\left\{\hat{w}_{i}\right\}$ for specified values of $\hat{\alpha}$ and $\hat{\sigma}$ and then using (3) and (4) to estimate $\hat{\alpha}$ and $\hat{\sigma}$ from the current values of $\left\{\hat{w}_{i}\right\}$.

The existence of missing values poses no problem. Since the formulas given previously are suitable for any linear model, they can be applied to the original data set with the missing values omitted. On the other hand, since the matrix $X^{\prime} X$ is inverted during the process of
finding the maximum likelihood estimates, it is often more convenient and the results more precise if this matrix is diagonal. For factorial designs in which all of the parameters are estimable from the original data, $X^{\prime} X$ can often be diagonalized by augmenting X with one row for each missing observation. The values of $\hat{\mathbf{w}}$, corresponding to these additional rows, are the maximum likelihood estimates of the missing values. Several methods by which a missing value can be specified are (i) confining the observation to be between $-\infty$ and ∞ (that is $L_{i}=-\infty, U_{i}=\infty$); (ii) censoring the observation to be less than ∞ (that is, $L_{i}=\infty, U_{i}=\infty$); (iii) censoring the observation to be greater than $-\infty$ (that is $L_{i}=-\infty, U_{i}=-\infty$).

Using the matrix of second partial derivatives of $l(\alpha, \sigma)$, an estimate of the variancecovariance matrix can be obtained. If this estimate is denoted by $V(\hat{\alpha}, \hat{\sigma})$, the elements in $G(\hat{\alpha}, \hat{\sigma})=V^{-1}(\hat{\alpha}, \hat{\sigma})$ are

$$
\begin{aligned}
& g_{k j}=g_{j k}=\hat{\sigma}^{-2}\left\{\sum_{A} x_{i j} x_{i k}+\sum_{B} x_{i j} x_{i k} T\left(-\hat{H}_{i}\right)+\sum_{\sigma} x_{i j} x_{i k} T\left(\hat{h}_{i}\right)\right. \\
& \left.+\sum_{D} x_{i j} x_{i k} T_{1}\left(\hat{h}_{i}, \hat{A}_{i}\right)\right\} \quad(k=1,2, \ldots, m ; j=1,2, \ldots, m) ; \\
& g_{m+1, j}=g_{j, m+1}=\hat{\sigma}^{-2}\left[\sum_{\boldsymbol{A}}\left\{\left(y_{i}-\hat{\mu}_{i}\right) / \hat{\sigma}\right\} x_{i j}+\sum_{B} \hat{H}_{i} T\left(-\hat{A}_{i}\right) x_{i j}\right. \\
& \left.+\sum_{\boldsymbol{O}} \hat{h}_{i} T\left(\hat{h}_{i}\right) x_{i j}-\sum_{D}\left[T_{3}\left(\hat{h}_{i}, \hat{H}_{i}\right)+S_{1}\left(\hat{h}_{i}, \hat{H}_{i}\right)\right] x_{i j}\right] \quad(j=1,2, \ldots, m) ; \\
& g_{m+1, m+1}=\hat{\sigma}^{-2}\left[r+\sum_{A}\left\{\left(y_{i}-\hat{\mu}_{i}\right) / \hat{\sigma}\right\}^{2}+\sum_{B} \hat{H}_{i}^{2} T\left(-\hat{H}_{i}\right)+\sum_{\boldsymbol{C}} \hat{h}_{i}^{2} T\left(\hat{h}_{i}\right)-\sum_{D} T_{2}\left(\hat{h}_{i}, \hat{H}_{i}\right)\right] .
\end{aligned}
$$

Structure
SUbroutine regres ($N, Y 1, Y 2$, P, MPLONE, X, ROWX, COLX, W, LENW, VCOV, WORK, LENWRK, ALPHA, TOL, MAXITS, IFAULT)

Formal parameters

N	Integer
$Y 1$	Real array (N)
$Y 2$	Real array (N)
P	Real array (N)

input: the number of observations n
input: if $P(i)=0$, the i th observation is completely specified in $Y 1(i)$; if $P(i)=-1$, the i th observation is censored on the left at $Y 1(i)$; if $P(i)=1$, the i th observation is censored on the right at $Y 1(i)$; if $P(i)=2$, the i th observation is confined between the two finite limits $Y 1(i)$ and $Y 2(i)$
output: if $P(i)=2$ and

$$
|Y 1(i)-Y 2(i)|<|Y 1(i)| . Q L I M I T
$$

the value of $P(i)$ is set to 0 ; otherwise the value of $P(i)$ is not changed

MPLONE	Integer
X	Real array $(R O W X, C O L X)$
ROWX	Integer
COLX	Integer
W	Real array (LENW) Integer
LENW	Real array $(L E N W R K)$

input: the total number of parameters to be estimated (i.e. $m+1$)
input: the design matrix $X(i, j)$ contains the coefficient of the j th location parameter for the i th observation
input: the number of rows of X (the program expects $R O W X \geqslant n$)
input: the number of columns of X (the program expects $C O L X \geqslant m$)
work:
input: the value of $L E N W$ must be at least $m+n$
output: if the procedure converged to the maximum likelihood estimates, the first $(m+1) \times(m+1)$
positions contain an estimate of the variancecovariance matrix of these estimates (see also IFAULT conditions -5 and -6)

WORK	Real array (LENWRK)
LENWRK	Integer
ALPHA	Real array
	$(M P L O N E)$

TOL

MAXITS	Integer
IFAULT	Integer

Failure Indications
Value of IFAULT
-1
-2
-3
-4
-5
-6
-7
-8
work:
input: the value of $L E N W R K$ must be at least $m \times n$ input: if ALPHA $(M P L O N E) \leqslant 0 \cdot 0$, the subroutine calculates initial parameter estimates; if $A L P H A(M P L O N E)>0 \cdot 0$, it contains the initial estimate of σ and $\operatorname{ALPHA}(j)$ contains an initial estimate of the j th location parameter for $j=1,2, \ldots, m$
output: the most recent parameter estimates before exit from the subroutine
input: convergence to the maximum likelihood parameter estimates has occurred when the absolute value of the difference between consecutive estimates of the j th parameter is less than $T O L(j)$ for $j=1,2, \ldots, m+1$
input: the maximum number of iterations allowed output: failure indicator

Meaning

maximum number of iterations reached and convergence has not been obtained
for a confined observation, $Y 1(i)>Y 2(i)$
at some iteration, for a confined observation
$\left|\Phi\left\{\left(Y 1(i)-\mu_{i}\right) / \sigma\right\}-\Phi\left\{\left(Y 2(i)-\mu_{i}\right) / \sigma\right\}\right|<Q L I M I T$, where Φ is the cumulative normal probability function and $\mu_{i}=\Sigma x_{i j} \alpha_{j}$ (summing over j from 1 to m) and σ are the current parameter estimates: when this condition is encountered, it is usually during the first iteration when the calling program has provided initial parameter estimates; the problem usually can be overcome by resubmitting the data but allowing the subroutine to calculate starting parameter estimates
number of completely specified plus confined observations is less than $m+1$
the matrix $X^{\prime} X$ is not positive definite, as determined by subroutine SYMINV, a matrix inversion procedure (Healy, 1968b); the values of NULLTY and IFAULT, returned by SYMINV, are placed in the first two positions of the array VCOV before returning to the calling program
the estimate of the variance-covariance matrix is not positive definite, as determined by subroutine S YMINV (Healy, 1968b); the values of NULLTY and IFAULT, returned by S YMINV, are placed in the first two positions of the array VCOV before returning to the calling program
ROWX is less than n
COLX is less than m
-9
-10
>0
$L E N W$ is less than $m+n$
$L E N W R K$ is less than $m \times n$
number of iterations needed for convergence

Auxiliary algorithm

The subroutine REGRES calls the subroutine $\operatorname{RMILLS}(X, F, R L I M I T)$, as described by Wolynetz (1979), which is a modification of AS 17 (Swan 1969b).

The subroutine REGRES also calls subroutine $S Y M I N V(A, N, C, W, N U L L T Y, N A, N C$, $N W$, IFAULT). This routine is almost the same as AS 7 (Healy, 1968b). To conform to ISO Fortran, the variables $N A, N C$ and $N W$ have been added to the argument list and are used to dimension the arrays A, C and W, respectively.

Subroutine S YMINV calls the subroutine $\operatorname{CHOL}(A, N, U, N U L L T Y, N A, N U, I F A U L T)$. The latter routine differs from AS 6 (Healy, 1968a) in that to conform to ISO Fortran, the variables $N A$ and $N U$ have been added to the argument list and are used to dimension to arrays A and U, respectively.

Subroutine REGRES also calls the subroutine $\operatorname{UNPACK}(X, N, L E N X)$. This subroutine expands a symmetric matrix of order N, stored in lower triangular form in the first $N(N+1) / 2$ positions of the real array X into a matrix, using the first N^{2} positions. Although not tested in subroutine $U N P A C K, L E N X$, the length of array X, must be at least N^{2}. (The argument passed by REGRES to UNPACK satisfies this condition.)

Constants

The constant QLIMIT (see condition under which IFAULT is set to -3 and also description of argument P) has been set to 10^{-5}. The constant RLIMIT \{third argument for subroutine RMILLS, see section on "Auxiliary algorithms" and Wolynetz (1979)\} has also been set to 10^{-5}.

Timing
The computer times required to analyse data from several design matrix configurations are shown in Table 1. Some general patterns were observed among these results. Within a row the computer time increased between 52 and 88 per cent when the cut-off value decreased from 1.281 to 0.525 and between 55 and 78 per cent when the cut-off value decreased from 0.525 to 0.0 ; however, the relative change decreased as the number of parameters increased. For $n=32$ at all levels of censoring, the addition of one extra parameter increased the computer time by between 18 and 39 per cent. Doubling the number of location parameters from three to six increased the computer time by approximately 120,90 and 70 per cent for $U_{i}=1 \cdot 281,0 \cdot 525$, 0.0 respectively, for both $n=32$ and $n=64$. Doubling the sample size from $n=32$ to $n=64$ increased the computer time by between 77 and 87 per cent. Finally, for given m and n, no reliable difference in computer time was noticed between when the matrix $X^{\prime} X$ is diagonal and when it is not.

Accuracy

This version of the algorithm was tested on a 32-bit machine. The maximum likelihood estimates of some of the test cases in Table 1 were evaluated using a single precision version of Powell's method (Powell, 1964) in order to verify both the correctness of the program and to assess the numerical accuracy. For the scale parameter, there was always agreement to at least three significant figures; for the location parameters, there was agreement to at least three significant figures for that parameter with the largest absolute value and to at least the corresponding digit for the other parameters. An earlier and less general version of this procedure was run on a different 32 -bit machine with the arithmetic being done in double precision. Better agreement was obtained.

Table 1
Typical computer times \dagger

Design	Characterization of $X^{\prime} X$	Sample size n	Number of location parameters m	Censoring scheme \ddagger			
				1.281 (0.1)	$0 \cdot 525$ (0.3)	$0 \cdot 0$ (0.5)	
16 reps of 2^{1}	diag.	32	2	0.026	0.049	0.087	
8 reps of 2^{2}	diag.	32	3	0.036	0.061	$0 \cdot 108$	
4 reps of 2^{3}	diag.	32	4	0.050	0.078	$0 \cdot 129$	
2 reps of 2^{4}	diag.	32	5	0.061	0.096	$0 \cdot 157$	
1 rep of 2^{5}	diag.	32	6	0.077	$0 \cdot 117$	$0 \cdot 185$	
16 reps of 2^{2}	diag.	64	3	0.065	$0 \cdot 111$	$0 \cdot 193$	
2 reps of 2^{5}	diag.	64	6	$0 \cdot 144$	0.211	0.328	
8 reps of 41 §	block diag.	32	4	0.046	0.074	$0 \cdot 1434$	
8 reps of 4\\|	diag.	32	4	0.048	0.076	0.147π	
Polynomial	non-orthog.	32	4	0.045	0.076	0.138	

\dagger All calculations performed on an IBM 370/168 computer operating under OS/VS2. The program was compiled using the Fortran G1 compiler. The time shown represent the total computer time in minutes to find the maximum likelihood estimates of the parameters for each of the 100 samples of size n. All simulations involving samples of size 32 based on the same generated values. Because of varying demands on the system, times were expected to vary within approximately 0.005 min .
\ddagger All observations were Type I censored on the right at the value shown. The number in parentheses is the probability that a $N(0,1)$ variate is greater than the cut-off value.
\S Parameterized as a factorial experiment with one factor (i.e. means for four groups parameterized as $\alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{4}$ and $\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}$).
$\|$ Means parameterized as $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}.
II In three of the 100 simulated cases, convergence was not obtained because all eight observations within a group were censored (i.e. all generated values were greater than $0 \cdot 0$); hence the computer time is somewhat higher than the other cases with $m=4$ because program continued until MAXITS iterations (set at 100 in these studies) were executed.

Better precision can be obtained by declaring the accumulating variables such as TEMP, SUM2, YMEAN to be DOUBLE PRECISION (and making any other necessary changes such as replacing the call to $S O R T$ and $E X P$ by $D S Q R T$ and $D E X P$ as some compilers require). When the data contain confined observations, the accuracy also depends upon the precision of the basic external function $E X P$.

Several test cases were run in which the observations were permuted; the estimates agreed to seven significant digits. Other test cases were reparameterized and rerun (for example, the second and third last rows in Table 1). The estimates of the scale parameter agreed to at least five significant digits and the estimates of the equivalent location parameters with the largest absolute value agreed to at least five significant digits.

Related Algorithms

If $m=1$, either AS 16 (Swan, 1969a) or the algorithm given by Wolynetz (1979) could be used to find the maximum likelihood estimates.

Acknowledgements

This work was partially supported by the National Research Council of Canada, the Province of Ontario Scholarship Fund and the University of Waterloo.

References

Dempster，A．P．，Laird，N．M．and Rubin，D．B．（1977）．Maximum likelihood from incomplete data via the $E M$ algorithm（with Discussion）．J．R．Statist．Soc．B，39，1－38．
Healy，M．J．R．（1968a）．Algorithm AS 6．Triangular decomposition of a symmetric matrix．Appl．Statist．， 17，195－197．
（1968b）．Algorithm AS 7．Inversion of a positive semi－definite symmetric matrix．Appl．Statist．，17， 198，196， 199 （p． 196 published out of sequence，See Appl．Statist．，18，118）．
Powell，M．J．D．（1964）．An efficient method for finding the minimum of a function of several variables without calculating derivatives．Computer J．，7，155－162．
Sampford，M．R．and J．Taylor（1959）．Censored observations in randomized block experiments．J．R． Statist．Soc．B，21，214－237．
Swan，A．V．（1969a）．Algorithm AS 16．Maximum likelihood estimation from grouped and censored Normal data．Appl．Statist．，18，110－114．
－＿（1969b）．Algorithm AS 17．The reciprocal of Mills＇s ratio．Appl．Statist．，18，115－116．
Wolynetz，M．S．（1979）．AS 138．Maximum likelihood estimation from confined and censored Normal data．Appl．Statist．，28，185－195．

```
    SUBROUTINE REGRES(N, YI, YZ, P, MPLONE, X, ROWX, COLX, W, LENW,
    * VCUV, WORK, LENWRK, ALPHA, TOL, MAXITS, IFAULT)
    ALGORITHM AS &39 APPL, STATIST: (1979) VOL,28, NO.2
    CUMPUTE MAXIMUM LIKELIHOOD ESTIMATES
    FROM A LINEAR MODEL WITH NORMAL HETEROGENEOUS VARIANCE.
    THE DESIGN MATRIX MUST BE NON-SINGULAR. THE DEPENDENT
    VARIABLE MAY INCLUDE OBSERVATIONS CENSORED IN EITHER TAIL
    AND/OR OBSERVATIONS CONFINED BETWEEN FINITE LIMITS.
    INTEGER RONX, COLX, P(N)
    DIMENSION X(ROWX, COLX), TOL(MPLONE), YI(N), YZ(N), ALPHA(MPLONE)
    DIMENSION VCOV (LENWRK), WORK(LENWRK), W(LENW)
    DATA OLIMIT /0,ODOEI/, RLIMIT/0,000GI/
    DATA C /0.39894228/
        CHECK ARRAY SIZES, ETC
    IFAULT = -7 
    IF (ROWX ,LT, N) RETURN
    IFAULT =-8
    IF (COLX ,LT,M) RETURN
    IFAULT = -9
    IF (LENW &T, (M + N)) RETURN
    IFAULT = -1D
    IF (LENWRK gLT: (M*N) *) RETURN
のாの
    INITIALIZATION
    M : MPLONE & 
            COMPUTE XIX IN LOWER TRIANGULAR FORM
        II © 
        DO 53 I = 1,M
        DO 50 J = 1, I
        TEMP = D,D
        DO 40 K = i, N
        40 TEMP = TEMP + X(K, I) 由 X(K, J)
    II=II 中 I
    VCOV(II) = TEMP
    50 CONTINUE
    53 CONTINUE
    GALLL SYMINVCVCOV, M, WORK, W, NUL, LENWRK, LENWRK, LENW, IFAULTJ
    IF (IFAULT ,NE, O) GOTO 60
    IF (NUL,EQ OS GOTO 70
60 VCOV(2)=IFANLT
    VCOV(I)=NUL
    IFAULT = mS
    RETURN
```

```
MATRIX NONGBINGULAR AND INVERSE OBTAINED
COMPUTE (XIX)INVERSE X X
FOLOWING SCHEME USED TO REDUCE NUMBER OF STORAGE ARRAYS
NEEDED, EXPAND FROM TRIANGULAR TO SQUARE MATRIX
    70 CALG UNPACK(WORK, M, LENWRK)
    DO MULTIPLICATION - ONE ROW AT A TIME - STARTING
    WITH THE LABT ONE
    JJ = N M M
    \(I I=M * M\)
    DO 220 I = \(1, \mathrm{M}\)
    II = IL. M
    DO 200 J : \(1, \mathrm{~N}\)
    TEMP \(=0.0\)
    DO \(170 K=1, M\)
    IIK \(=I I+K\)
    TEMP \(=\) TEMP + WORK(IIK) X(J, K)
    170 CONTINUE
    \(W(J)=\) TEMP
    200 CONTINUE
    DO 2it J \(=1, N\)
    IJ \(=N+1\) - 3
    WORK(JJ) \(=\) W(IJ)
    JJ = JJ - 1
    210 CONTINUE
    220 CONTINUE
C
    XSIG = ALPHA (MPLONE)
    IF (XSIG GT: 0,0 ) GOTO 500
    NO ACCEPTABLE INITIAL VALUE FOR SIGMA HAS BEEN INPUT.
    OBTAIN INITIAL ESIIMATES FROM EXACTLY SPECIFIED
    OBSERVATIONS ONLY CALTHOUGH MATRIX BASED ON ALL
    OBSERVATIONS) AND CONFINED OBSERVATIONS
    II \(=-N\)
    DO 308 I 1, \(M\)
    II II + N
    TEMP \(=D_{0} 0\)
    DO 280 J 1. N
    IIJ = II + J
    IPT \(=P(J)\)
    IF (IPT EEO, O) G010 270
    IF (IPT, EQ, 2) TEMP = TEMP + WORK(IIJ) * (YI (J) + Y2(J)) * 0.5
    GOTO 280
    270 TEMP \(=\) TEMP + WORK(IIJ) * YI(J)
    288 CONTINUE
    ALPHA(I) = TEMP
    300 CONTINUE
        CALGULATE INITIAL ESTIMATE OF SIGMA
        SUM2 \(=0.0\)
TEMP \(=0.0\)
        00350 I \(1, \mathrm{~N}\)
        IPT © P(I)
        IF (IABS(IPT) ,EQ: 1) GOTO 350
        DEMP = Y! (I)
        IF (IPT, EO, 2) DEMP \(=(D E M P+Y 2(I)) * 0.5\)
        DO \(320 \mathrm{~J}=1, \mathrm{M}\)
    320 DEMP \(=\) DEMP . ALPHA(J)* X(I, J)
        SUMZ \(=\) SUMZ + DEMP ** 2
        TEMP \(=\) TEMP \(+1,0\)
    350 CONTINUE
    XSIG = SQRT(SUM2 / TEMP)
のロロ
500 \(R=0\) ロ
    \(R 2=\theta_{8} \theta\)
```

```
    IFAULT = m2
    DO 60D I = 1,N
    IPT = P(I)
    IF (IPT EQ, 0) GOTO 550
    IF (IPT EQ 2,AND, ABS(YI(I) Y2(I)) LEE
    * OLIMJT ABS(YI(I))) GOTO 54b
        IF (IPT,NE, 2) GOTO 600
        R2 = R2 + 1,0
        IF (YI(I) GT, Y2(I)) GOTO 600
        RETURN
    540 P(I) =0
    550R=R+1.R
        W(I) = Yi(I)
    600 CONTINUE
        I = R + R2 + O,DI
        IFAULT = 4 
        IF (I LT. MPLONE) RETURN
        IFAULT=0
0ロn
    620 TD = R
    SUMZ = 0, 
C
        COMPLETE W-VECTOR
        001000 I & & N
        IPT = P(I)
        YMEAN = D,B
        DO 65B J = l. M
    650 YMEAN = YMEAIN + ALPHA(J) * X(I, J)
        IF (IPT ,EO, O) GOTO 990
C
            OBSERVATION NOT EXACTLY SPECIFIED
        TEMP = (YI(I) - YMEAN) / XSIG
        IF (IPT @ |) 750, 70日, 800
C
    700 CALL KMILLS(TEMP, F, RLIMIT)
        W(I) = YMEAN + XSIG * F
        TD = TD + F* (F - TEMP)
        GOTO 990
C
    750 CALL RMILLS(#TEMP, F, RLIMIT)
    W(I) = YMEAN*XSIG*F
    TD = TD +F* (F TEMP)
    GOTI 990
C
    800 YN=EXP(-B,5 (TEMP ** 2) * C
    CALL RMILLS(TEMP, F, RLIMIT)
    YN = YN / F
    TMPU = (Y2(I) © YMEAN) / XSIG
    YNU = EXP(*U,5 * TMPU ** 2) * C
    CALL RHILLS(TMPU, FU, RLIMIT)
    YQU = YNU / FU
    TINT = YQ - YQU
    IF (TINT GE, QLIMIT) GOTO 820
C
C
    RETURN
820 A (YN YNU) / TINT
    W(I) = YMEAN + XSIG * A
    TD & TD & (A ** 2 + (TMPU * YNU = TEMP * YN) / TINTS
```

```
C CALCULATE RESIDUAL SUM OF SQUARES
    990 SUM2 SUM2 + (W(I) YMEAN) ** 2
    1000 CONTINUE
C
    UPDATE PARAMETER ESTIMATES STORE IN END OF WGVECTOR
        JJ=-N
        DO 1200 J = 1,M
        JJ=JJ+N
        TEMP = O,D
        DO 1100 I = H,N
        JJI *J\ +I
        TEMP = TEMP + WORK(JJI) * W(I)
    1100 CONTINUE
    NJ = N + J
    H(NJ) = TFMP
    1200 CONTLNUE
    NJ = N + MPLONE
    W(NJ) = SQRT(SUM2 / TD)
C
            TEST FOR CONVERGENCE
    OD 1300 J = 1, MPLONE
    NJ=N+J
    IF (ABS(ALPHA(J) W(NJ)),GE, TOL(J)) GOTO 1400
    1300 CONTINUE
C
        IF WE REACH HERE, CONVERGENCE OBTAINED
    IJ = IFAULT
    LFAULT = - 1
C
    1400 DO 1450 J= 1. MPLONE
            NJ=N+J
            ALPHA(J) = H(NJ)
1450 CONT$NUE.
    XSIG = ALPHA(MPLUKE)
            IFAULT a IFAULT + 1
            IF (IFAULT EQ: b) GUTO 1600
            IF (IFAULT,LE, MAXITS) GOTO-620
            IFAULT = - I
            RETURN
C
160日 II = MPLONE * (MPLONE + 1)/2
    DO 1050 I a d, II
1650 WOKK(I)=0,0
    DO 2500 I = 1. N
            IPT = P(I)
            YS=YI(I)
    DO 1680 J & L.M
1680 YS = YS ALPHA(J) * X(I,J)
    YS =YS/XSIG
            JJ=0
    IF (IPT ,NE, O) GOYO 1900
C
                    CONVLRGENCE OBTAINED CDMPUTE VARIANCEOCOVARIANCE
            MATRIX. INITIALIZE WORK ARRAY
                    EXACTLY SPECIFIED OBSERVATION
    DO 1750k=1, M
    DO 1720 J=ík
    JJ = JJ + 1
    WORK(JJ) =WORK(JJ) + X(I,K) * X(I,J)
1720 CONTINUE
    KK=IIt+1@K
    WORK(KK) = WORK(KK) & YS * X(I, K)
1750 CONTINUE
    WORK(II) = WORK(III) +2, O + YS ** 2
```



```
C UNPACK THE MATRIX 
        RETURN
        END
C
    SUBROUTINE UNPACK(X, N, LENX)
```



```
    ALGORITHM AS $39.1 APPL, STATIST. (1979) VOL, 28, NO.2
        THIS SUBROUTINE EXPANDS A SYMMETRIC MATRIX STORED IN LOWER
        TRIANGULAR FORM IN THE FIRST N*(N+1)/2 POSITIONS OF X
        INTO A MATRIX USING THE FIRSI NAN POSITIONS
        LENX - THE LENGTH OF VECTOR X - mUST BE NOT LESS THAN N&N
        DIMENSION X(LENX)
        NSQ = N*N
        II = NSQ
        JJ=N*(N+1)/2
            STORE LAST ROW
        D010 I = 1.N
        x(II) = x(JJ)
        II= II-!
        JJ = JJ - !
    IO CONTINUE
        DO 8@ I = 2, N
            OBTAIN UPPER PART OF MATRIX FROM PART ALREADY SHIFTED
        !J = I-1
        KK = NSQ + 1 - I
        DO 50 J = 1, IJ
        X(II) = X(KK)
        II = II - !
        KK = KK - N
        50 CONTINUE
            OHTAIN LOWEF PART OF MATRIX FROM
            UKIGINAL TRIANGULAR STORAGE
        IJ = N-IJ
        DO 70 J = 1. IJ
        x(II) = x(JJ)
        II = II-1
        JJ = JJ = 1
        70 CONTINUE
        80 CONTINUE
        RETURN
    END
```


Algorithm AS 140

Clustering the Nodes of a Directed Graph

By Gary W. Oehlert \dagger
Yale University

Keywords: CLUSTERING; DIRECTED GRAPH; MAXIMUM LIKELIHOOD; TRANSFER ALGORITHM
Language
ISO Fortran
\dagger Development of this algorithm was partially supported by National Science Foundation Grant DCR75-08374.

