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300 A u 2,0 
31: Y 
8: Y 
Al: Y ** 2 + l,O 
A2 - Y * (Al + 2,0) 
82 Al t 1,0 
T - A2 / 52 

140 A A + 1,0 
AO - Al 
Al : A2 
A2 2 Y * Al + A * AO 

at - 82 
B2 : Y * 5X + A * 80 
R _ S 
8 z 1 
T a A2 / 82 
IF CT a R ,GT, TOL ,OR, T78 ,GT, TOL) GOT0 140 
FUNC 0 T 
IF $GN ,LT, 0,0) FUNC s 

* t / (2*0 * FPI * CXPCW,5 * Y ** 2) * T I,O) 
RETURN 
END 

Algorithm AS 139 

Maximum Likelihood Estimation in a Linear Model from Confined 
and Censored Normal Data 

By M. S. WOLYNETZ 
Statistical Research Service, Agriculture Canada 

Keywords: NORMAL DISTRIBUTION; REGRESSION; MAXMUM LIKELIHOOD; CENSORED OBSERVA- 
TIONS; CONFINED OBSERVATIONS; INCOMPLETE OBSERVATIONS 

LANGUAGE 

ISO Fortran 

DESCRIPTION AND PURPOSE 
Dempster et al. (1977) proposed an iterative method, called the EM algorithm, for obtain- 

ing the maximum likelihood estimates from incomplete data. The procedure consists of 
alternately estimating the incomplete observations from the current parameter estimates and 
estimating the parameters from the actual and estimated observations. 

Previously, Sampford and Taylor (1959) used this same procedure for finding the maximum 
likelihood estimates of the location parameters and the scale parameter in a two-factor 
factorial experiment when the data contain observations censored on the right. 

This version of the algorithm explicitly extends their procedure to permit observations to 
be censored on the left (i.e. only upper bounds for some observations are known); to permit 
observations to be confined between finite limits (i.e. only finite lower and upper bounds are 
known for some observations); to handle any fixed effects design matrix Xnxm of rank m < n, 
where n is the number of observations (i.e. any experiment in which there is one homogeneous 
variance component a2). 
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NummcAL METHOD AND TIHEORY 

In a related paper (Wolynetz, 1979), it was assumed that each observation, before censoring 
or confining, arose from a N(,u, a2) distribution. Here, suppose that the independent observa- 
tions, before censoring or confining, arise from several Normal distributions with possibly 
different means but common variance, o2. More specifically, let the mean of the ith observa- 
tion yi be ju and suppose that, prior to censoring or confining, 

m 
E(y) = xii 0s, i = l, 2, ...,.n, 

i-i 

where n is the number of observations. In matrix notation E(Y)= = Xai where Y is the 
vector of observations (Y1,Y2, ..,yn)', IL is the vector of means (jti, ..., a n is the vector of 
location parameters (x, ..., oj' and X is an n x m matrix with entries xi. In this para- 
meterization, it is assumed that the matrix Xnxm is of rank m (m < n). 

Partition the set {iI i = 1, ..., n} into the four sets A, B, C and D defined by Wolynetz (1979). 
Letting hi = (Li-,u)/a and H7 = (Us-,u)/a {see Wolynetz (1979) for definitions of Li, Us, w, r, 
and the functions Q(x), Q(x,y), S(x), S1(x,y), S2(x,y), T(x), Tl(x,y), T2(x,y), T3(x,y)}, the log- 
likelihood function of a and a is 

l(a, a) =r log a -i Z (yi - IL,&r + Z log Q(- 0 + Z log Q(hj) + E log Q(hjt 1. 
A B C D 

The normal equations, evaluated at the maximum likelihood estimates, & and @, are 

81(cz, a) - 2 T (Y ) X-k -1 0 S- A) Xik 
@k IXt-a,cr'=e A B 

+ &1l S(fA X0k + -1 E S1(I,s)Z Xik = 0, (1) 
a D 

where k = 1,2, ...,m; and 
81(CE, a) | = A_-+6_8j(Yi_ 

Y,HiS(-I)+&- ,hi S(h; - a-E S2(it) = 0. (2) 
B C D 

Using equation (3) in Wolynetz (1979), the system of equations in (1) can be rewritten 

s21 Ws-{z1 & Xi)Xk =O?, k = It 2, .. ., m., 

or, in matrix notation, 
(X'X)& = X'* 

where * is the vector (i\, w, ..., w Since X is assumed to be of rank m, 

& = (X'X)-1 X'*. (3) 
As in Wolynetz (1979), 

2 = i (rV-_ Ax ir + (-A+z E TO+ Z Ti(hi 1} (4) 

The iterative procedure for finding & and & consists of alternately using equation (3) of 
Wolynetz (1979) to estimate {0} for specified values of & and & and then using (3) and (4) to 
estimate & and & from the current values of {iw}. 

The existence of missing values poses no problem. Since the formulas given previously are 
suitable for any linear model, they can be applied to the original data set with the missing 
values omitted. On the other hand, since the matrix X'X is inverted during the process of 

This content downloaded from 124.171.36.122 on Sun, 5 Oct 2014 04:19:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STATISTICAL ALGORITHMS 197 

finding the maximum likelihood estimates, it is often more convenient and the results more 
precise if this matrix is diagonal. For factorial designs in which all of the parameters are 
estimable from the original data, X'X can often be diagonalized by augmenting X with one 
row for each missing observation. The values of *, corresponding to these additional rows, 
are the maximum likelihood estimates of the missing values. Several methods by which a 
missing value can be specified are (i) confining the observation to be between -cc and cc (that 
is L4 = - oo, Ui = cm); (ii) censoring the observation to be less than oo (that is, Li = oo, Us = c); 
(iii) censoring the observation to be greater than - cc (that is LI =-oo, Us =-c). 

Using the matrix of second partial derivatives of l(a, a), an estimate of the variance- 
covariance matrix can be obtained. If this estimate is denoted by V(&, &), the elements in 
G(&, a) = V-W(&, &) are 

gkj = gjk = & { Xj Xik + z Xj Xik T(- A) + E xf xik T(O2) 
A B C 

+ E xi XA:s Ti(hp J1} (k = 1, 2, ... ., m; j = 1, 2, . . .,) 
D 

gm+Lj = gj,mp = I2[, {(y - AM)/ }xi + z fl, T(-f ) xi 
A B 

+ E h T(h) x - [Ta(h, Ai) + S1(s, &] x] (J = 1, 2, ... , m); 
a D 

gm+i,m+i = 2[r + i {(y,- o)/l&} + i ft2 T(-f4) + , A2 T(A)- i T2(Ah, A]. 
A B 0 D 

STRUCTURE 

SUBROUTINE REGRES (N, Yl, Y2, P, MPLONE, X, ROWX, COLX, W, LENW, VCOV, 
WORK, LEN WRK, ALPHA, TOL, MAXITS, IFA ULT) 
Formal paraneters 
N Integer input: the number of observations n 
Y1 Real array (N) input: if P(i) = 0, the ith observation is completely 
Y2 Real array (N) specified in Yl(i); if P(i) = -1, the ith observa- 
P Real array (N) tion is censored on the left at Yl(i); if P(i) = 1, 

the ith observation is censored on the right at 
Yl(i); if P(i) = 2, the ith observation is con- 
fined between the two finite limits Yl(i) and 
Y2(i) 

output: if P(i) = 2 and 
I Yl(i)- Y2(i)|<| Yl(i)J.QLIMIT7 

the value of P(i) is set to 0; otherwise the value 
of P(i) is not changed 

MPLONE Integer input: the total number of parameters to be esti- 
mated (i.e. m+ 1) 

X Real array input: the design matrix X(i, j) contains the co- 
(RO WX, COLX) efficient of thejth location parameter for the ith 

observation 
RO WX Integer input: the number of rows of X (the program expects 

RO WX) n) 
COLX Integer input: the number of columns of X (the program 

expects COLX>m) 
W Real array (LENW) work: 
LENW Integer input: the value of LENW must be at least m + n 
VCOV Real array output: if the procedure converged to the maximum 

(LENWRK) likelihood estimates, the first (m+ 1) x (m+ 1) 
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198 APPLIED STATISTICS 

positions contain an estimate of the variance- 
covariance matrix of these estimates (see also 
IFA ULT conditions -5 and -6) 

WORK Real array (LENWRK) work: 
LENWRK Integer input: the value of LENWRK must be at least m x n 
ALPHA Real array input: if ALPHA (MPLONE) (00, the subroutine 

(MPLONE) calculates initial parameter estimates; if 
ALPHA(MPLONE) > 0 0, it contains the initial 
estimate of a and ALPHA(j) contains an 
initial estimate of the jth location parameter 
forj= 1,2, ..., m 

output: the most recent parameter estimates before exit 
from the subroutine 

TOL Real array input: convergence to the maximum likelihood para- 
(MPLONE) meter estimates has occurred when the absolute 

value of the difference between consecutive 
estimates of the jth parameter is less than 
TOL(j) forj= 1,2,...,m+1 

MAXITS Integer input: the maximum number of iterations allowed 
IFA ULT Integer output: failure indicator 
Failure Indications 

Value of IFA ULT Meaning 
-1 maximum number of iterations reached and con- 

vergence has not been obtained 
-2 for a confined observation, Yl(i)> Y2(i) 
-3 at some iteration, for a confined observation 

1I {( Yl(i) -u)/a} - O{( Y2(i) -,ui)/a}! < QLIMIT, 
where D is the cumulative normal probability function 
and pu = E x,j e1 (summing over j from 1 to m) and a 
are the current parameter estimates: when this condition 
is encountered, it is usually during the first iteration 
when the calling program has provided initial para- 
meter estimates; the problem usually can be overcome 
by resubmitting the data but allowing the subroutine 
to calculate starting parameter estimates 

-4 number of completely specified plus confined observa- 
tions is less than m+ 1 

-5 the matrix X'Xis not positive definite, as determined by 
subroutine S YMINV, a matrix inversion procedure 
(Healy, 1968b); the values of NULLTY and IFAULT, 
returned by S YMINV, are placed in the first two posi- 
tions of the array VCO V before returning to the calling 
program 

-6 the estimate of the variance-covariance matrix is not 
positive definite, as determined by subroutine 
SYMINV (Healy, 1968b); the values of NULLTY and 
IFA ULT, returned by SYMINV, are placed in the first 
two positions of the array VCOV before returning to 
the calling program 

-7 ROWX is less than n 
-8 COLX is less than m 
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STATISTICAL ALGORITHMS 199 

-9 LENW is less than m + n 
-10 LENWRK is less than m x n 
> 0 number of iterations needed for convergence 

Auxiliary algorithm 
The subroutine REGRES calls the subroutine RMILLS(X, F, RLIMIT), as described by 

Wolynetz (1979), which is a modification of AS 17 (Swan 1969b). 
The subroutine REGRES also calls subroutine SYMINV(A, N, C, W, NULLTY, NA, NC, 

NW, IFAULT). This routine is almost the same as AS 7 (Healy, 1968b). To conform to ISO 
Fortran, the variables NA, NC and NW have been added to the argument list and are used to 
dimension the arrays A, C and W, respectively. 

Subroutine S YMINV calls the subroutine CHOL(A, N, U, NULLTY, NA, NU, IFA ULT). 
The latter routine differs from AS 6 (Healy, 1968a) in that to conform to ISO Fortran, the 
variables NA and NU have been added to the argument list and are used to dimension to 
arrays A and U, respectively. 

Subroutine REGRES also calls the subroutine UNPACK(X, N, LENX). This subroutine 
expands a symmetric matrix of order N, stored in lower triangular form in the first N(N+ 1)/2 
positions of the real array X into a matrix, using the first N2 positions. Although not tested 
in subroutine UNPACK, LENX, the length of array X, must be at least N2. (The argument 
passed by REGRES to UNPACK satisfies this condition.) 

Constants 
The constant QLIMIT (see condition under which IFA ULT is set to -3 and also descrip- 

tion of argument P) has been set to 10-5. The constant RLIMIT {third argument for sub- 
routine RMILLS, see section on "Auxiliary algorithms" and Wolynetz (1979)} has also 
been set to 10-5. 

TIMING 
The computer times required to analyse data from several design matrix configurations are 

shown in Table 1. Some general patterns were observed among these results. Within a row 
the computer time increased between 52 and 88 per cent when the cut-off value decreased from 
1 '281 to 0 525 and between 55 and 78 per cent when the cut-off value decreased from 0X525 to 
0'0; however, the relative change decreased as the number of parameters increased. For n = 32 
at all levels of censoring, the addition of one extra parameter increased the computer time by 
between 18 and 39 per cent. Doubling the number of location parameters from three to six 
increased the computer time by approximately 120, 90 and 70 per cent for Ui = 1-281, 0 525, 
0 0 respectively, for both n = 32 and n = 64. Doubling the sample size from n = 32 to 
n = 64 increased the computer time by between 77 and 87 per cent. Finally, for given m and 
n, no reliable difference in computer time was noticed between when the matrix X'X is 
diagonal and when it is not. 

AccuRAcY 
This version of the algorithm was tested on a 32-bit machine. The maximum likelihood 

estimates of some of the test cases in Table 1 were evaluated using a single precision version of 
Powell's method (Powell, 1964) in order to verify both the correctness of the program and to 
assess the numerical accuracy. For the scale parameter, there was always agreement to at 
least three significant figures; for the location parameters, there was agreement to at least 
three significant figures for that parameter with the largest absolute value and to at least the 
corresponding digit for the other parameters. An earlier and less general version of this 
procedure was run on a different 32-bit machine with the arithmetic being done in double 
precision. Better agreement was obtained. 
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TABLE 1 

Typical computer tiinest 

Number of 
Sample location Censoring schemel 

Characterization size parameters 
Design of X'X n m 1P281 (0 1) 0 525 (0-3) 00 (0 5) 

16 reps of 21 diag. 32 2 0-026 0 049 0-087 
8 reps of 22 diag. 32 3 0-036 0-061 0-108 
4 reps of 23 diag. 32 4 0 050 0-078 0-129 
2 reps of 24 diag. 32 5 0-061 0-096 0-157 
1 rep of 25 diag. 32 6 0077 0-117 0-185 

16 reps of 22 diag. 64 3 0065 0 111 0-193 
2 reps of 25 diag. 64 6 0-144 0-211 0-328 
8 reps of 41? block diag. 32 4 0-046 0 074 0-1431 
8 reps of 411 diag. 32 4 0-048 0-076 0 147? 

Polynomial non-orthog. 32 4 0 045 0-076 0-138 

t All calculations performed on an IBM 370/168 computer operating under OS/VS2. The program was 
compiled using the Fortran GI compiler. The time shown represent the total computer time in minutes 
to find the maximum likelihood estimates of the parameters for each of the 100 samples of size n. All 
simulations involving samples of size 32 based on the same generated values. Because of varying demands 
on the system, times were expected to vary within approximately 0 005 min. 

t All observations were Type I censored on the right at the value shown. The number in parentheses 
is the probability that a N(O, 1) variate is greater than the cut-off value. 

? Parameterized as a factorial experiment with one factor (i.e. means for four groups parameterized as 
011+a2, (X1+%, o1+zl and cl1-c02- O3- x4). 

11 Means parameterized as ox1, 0r2, 0x3 and x4. 
? In three of the 100 simulated cases, convergence was not obtained because all eight observations within 

a group were censored (i.e. all generated values were greater than 0 0); hence the computer time is somewhat 
higher than the other cases with m = 4 because program continued until MA XITS iterations (set at 100 in 
these studies) were executed. 

Better precision can be obtained by declaring the accumulating variables such as TEMP, 
SUM2, YMEAN to be DO UBLE PRECISION (and making any other necessary changes such 
as replacing the call to SORT and EXP by DSQRTand DEXP as some compilers require). When 
the data contain confined observations, the accuracy also depends upon the precision of the 
basic external function EXP. 

Several test cases were run in which the observations were permuted; the estimates agreed 
to seven significant digits. Other test cases were reparameterized and rerun (for example, the 
second and third last rows in Table 1). The estimates of the scale parameter agreed to at least 
five significant digits and the estimates of the equivalent location parameters with the largest 
absolute value agreed to at least five significant digits. 

RELATED ALGORITHMS 

If m = 1, either AS 16 (Swan, 1969a) or the algorithm given by Wolynetz (1979) could be 
used to find the maximum likelihood estimates. 
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SU8BOUTINE REGRES(N, Y1, Y2, P, MPLONE, X, ROWX, COLX, W, LENW. 
* VCUV, ORK, LENIRK, ALPHA, TOL, MAXITS, IFAULT) 

C 
C ALGORITHM AS 139 APPLo STATIST. (1979) VOLs28, NO.2 
C 
C CUMPUTE MAXIMUM LIKELIHOOD ESTIMATES 
C FROM A LINEAR MODEL WITH NORMAL HETEROGENEOUS VARIANCE. 
C TrC DESIGN MATRIX MUST BE NONwSINGULAR* THE DEPENDENT 
c VARIABLE MAY INCLUDE OBSERVATIONS CENSORED IN EITHER TAIL 
C AND/OR OBERVATIONS CONFINED BETWEEN FINITE LIMITS. 

INTEGER RONX, COLX, P(N) 
DlMNSION XCROWX, COLX), TOLCMPLONE), Y1(N)v Y2(N), ALPHACMPLONE) 
DIMENSION VCOV(LCNWRK), WORK(LENWRK), WCLENW) 
DATA GLIMIT /0,00001/, RLIMIT /0,00001/ 
DATA C /0,39894228/ 

C CHECK ARRAY SIZES, ETC 

IFAULT .-7 
IF (RUWX *LT, N) RETURN 
IFAULT = -8 
IF (COLX *LT, H) RETURN 
IFAULT -.9 
IF (LENW .LT, CM + N)) RETURN 
IFAULT - 10 
IF (LENWNK gLT, (M * N)) RETURN 

C 
c INITIALIZATION 
C 

M * HPLONE * 1 
C 
C COMPUTE X1X IN LONER TRIANGULAR FORM 
C 

II s B 
DO S3 I 1, M 
DO 50 J 1, I 
TEMP - 0,0 
DO 40 K - to N 

40 TEMP - TEMP + XCK, I) * X(K, J) 
II - II * I 
VCOVC(I) = TEMP 

50 CONTINUE 
53 CONTINUE 

CALL SYMINVCVCOV, M, WORK, W, NUL, LENWRK, LENWRK, LENW, IFAULT) 
IF (IFAULT ,NE, 0) GOTO 00 
IF CNUL ,EQ, 0) GOTO 70 

00 VCOV(2) z IFAULT 
VCOVO() _ NUL 
IFAULT z w5 
RETURN 
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MATRIX NONw$INGULAR AND INVERSE OBTAINED 
COMPUTE tXtX)INVERSE * X 

C FOLLOWING SCHEME USED TO REDUCE NUMBER Of STORAGE ARRAYS 
C NEEDED, EXPAND FROM TRIANGULAR TO 3QUARE MATRIX 
C 

76 CALL UNPACK(WORKu Me LCNWRK) 
C 
C DO MULTIPLICATION * ONE ROW AT A TV4E * STARTING 
C WITH THE LAST ONE 
C 

J : N * M 
II t * H 
Do 220 I :, M 
It : IZ * H 
DO 200 J a St N 
TEMP _ 0,0 
D0 3?0 K * I, H 
IlK It + K 
TEMP - TEMP * WORKCIIK) * %tJ, K) 

370 CONTINUE 
w(J) : TEMP 

200 CONTINUE 
DO 210 J s g, N 
IJ - N + t a J 
WORKC J) WCIJ) 
AJj: ~J * 1 

210 CONTINUE 
226 CONTINUE 

C 
XS1G - ALPHACMPLONE) 
IF CXSIG ,Gt, 000) GOTO 500 

C 
C NO ACCEPTABLE INITIAL VALUE FOR SIGMA HAS BEEN INPUTS 

OBTAIN INITIAL ESTIMATES FROM EXACTLY SPECIFIED 
C 0OERVATIONS ONLY CALTHOUGH MATRIX BASED ON ALL 
C OBSERVATIONS) AND CONFINED 08ERVATIONS 

DO 300 I I t H 
II a II + N 
TEMP : 0,0 
00 280 J 1, N 
1IJ - it + J 
IPT - PCJ) 
IF CIPT ,EQ, 0) G000 270. 
IF (IPT ,EO, 2) TEMP.- TEMP + WORKCIIJ) * CY1CJ) * Y2(J)) * 9*5 
GOTO 280 

270 TEMP 2 TEMP + WORKCIIJ) * YICJ) 
280 CONTINUE 

ALPhAtI) a TEMP 
300 CONTINUe 

C 
C CALCULATE INITIAL ESTIMATE OF SIGMA 
C 

$UM2= Ol,0 
TEMP - 0,0 
DO 35B I * It N 
IPT * P(I) 
IF (IABS(IPT) ,gQ 1.) GOTO 350 
Q"MP - y1(C) 
IF (IPT ,EO, 2) DEMP = (DrMP + Y2(I)) 0,5 
DO 320 J 1, M 

320 DEMP = DEMP a ALPHACJ) * XCI, J) 
SuMo - SUM2 + DEMP ** 2 
TEMP = TEMP t 1,0 

350 CONTINUE 
XSIG - SQRTCSUM2 / TEMP) 

C CQMPUTE SOME CONSTANTS NEEDED THROUGHOUT 
C 

500 R - 0,0 
R2 = 0,0 
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IFAULT "2 
DO 600 I a I, N 
IPT = PCI) 
IF (IPT ,EO, 0) GOTO 550 
IF (IPT ,EQ, 2 ,AND, ABSCYI(I) ' Y2C)) sLEC 

* QLIMIT * ABS(Y(I)M)) GOTO 540 
IF (IPT ,NE, 2) GOTO 600 
R2 - R2 + ,0? 
IF CYICl) *LT, Y2C)) GOTO 600 
RETURN 

S40 PCI) - 0 
550 R = R + 1,0 

WtI) - Y1CI) 
600 CONfINUE 

I = R + R2 + 0,01 
IFAULT: *4 
IF (I ,LT, MPLONE) RETURN 
IFAULT 0 

C 
C START OF ITERATION PROCEDURE 
C 

620 TD O R 
sump - o,0 

C COMPLETE WaVECTOR 
C 

DO 1000 I 3 t, N 
IPt - P(I) 
YMEAN - 0,0 
DO 650 J a 1, M 

350 YMEAN a YMEAS4 t ALPHACJ) XCI, J) 
IF CIPT ,EQ, 0) GOTO 990 

C 
C OBSERVATION NOT EXACTLY SPECIFIED 

TEMP ( CY1IC) - YMEAN) / XSIG 
IF CIPT " 1) 750, 700, 800 

C 
C OBSERVATION CENSORED FROM ABOVE w LOWER BOUND KNOWN 
C 

700 CALL RMILL3(TEMP, F, RLIMIT) 
tCI) J YMEAN + XSIG * F 

TD: TD + F * CF * TEMP) 
GOTO 990 

C 
C OBSERVATION CENSORED FROM BELOW UPPER BOUND KNOWN 
C 

750 CALL RMILLS("TEMP# F, RLIMIT) 
hMC) = YMEAN * XSIG * f 
Tr = TV + F A (F + TEMP) 
GOTOJ 9991 

C 
C OBSERVATION CONFINED TO LIE BETWEEN TWO FINITE LIMITS 
C 

800 YN m EXP(-0,5 A TEMP ** 2) * C 
CALL RMILLS(TEMP, F, RLIMIT) 
YQ = YN / F 
TMPU (Y2(I) YMEAN) / XSIG 
YNU EXP(0,95 * TMPU ** 2) * C 
CALL RMILLS(TMPU, FU, RLIMIT) 
YQU= YNU / FU 
TINT YQ YOU 
IF CTINT *GE, GLIMIT) GOTO 820 

C AFTER STANDARDIZING, UPPER AND LOWER LIMITS RESULT IN 
C SAME PROBABILITY INTFGRAL 
C 

IFAULT w3 
RETURN 

8?0 A * (YN * YNU) / TINT 
C(I) = YMEAN + XSIG * A 

TD TD + (A ** 2 t CTMPU * YNU w TEMP * YN) / TINT) 
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C CALCULATE RESIDUAL OUM OF SQUARES 
C 

990 SUM2 a SUM2 + (WCI) * YMEAN) ** 2 
1000 CONT.INUE 

C 
U., UPDATE PARAMETER ESTIMATES * STORE IN END OF WwVECTOR 
C 

JJ -N 
DO 3200 J 1. I 
JJ 4 JJ + N 
TEMP * 000 
Do 1100 I * l, N 
JJI * 43 + I 
TEMP TEMP + WORK(JJI) * MCI) 

2100 CONTINUE 
NJ = N + J 
M CNJ) TFMP 

1200 CONTINUE 
NJ = N + MPLONE 
V'CNJ) = SQRT(SUM2 / 0D) 

C 
C TEST FOR CONVERGENCE 
C 

00 1300 J - l, MPLOIE 
NJ = N + J 
IF (ABSSALPHA(J) * W(NJ)) ,GE, TOLMJ)) GOTO 1400 

1300 CONTINUE 
C 
C IF WE REACH HERE, CONVERGENCE OBTAINED 
C 

IJ. - IFAULT 
JIFAULT -1 

C UPDATE VALUES 
C 
2400 DO 1450 J * I, MPLONE 

NJ * N + J 
ALPHACJ) J (WNJ) 

3450 CONTINUE 
XSIG - ALPHA(MPLONE) 
IFAULT a IFAULT + 1 
IF CIFAULT ,EQ, 0) GUTO 1600 
IF CIFAULT ,LE, MAXITS) GUTO -620 
IFAULt * "1 
RETURN 

C CONVLRGENCE OBTAINED a COMPUTE VARIANCF*COVARIANCE 
C MATRIX, INITIALIZE tJORK ARRAY 
C 
1600 II * MPLONE * (MPLONE. + 1) / 2 

Do 1650 I a l, II 
2650 HONIK(I) * 0,0 

Do 2500 I 1. N 
IPT P(I) 
YS Y1tI) 
DO 2680 J * 1, M 

3680 YV S YS * ALPHACJ) * XCI, J) 
YS V YS / XSIG 
JJ - OS 
IF CIPT *ME, 0) GOlD 1900 

C 
C EXACTLY SPECIFIED OBSF.VATION 
C 

PO 2750 K 3 l, X 

DO 1720 J a Ki 
43 = JJ + 1 
WORKtJJ) * WORK(JJ) + XCI, K) * XCI J) 

3720 CONTINUE 
KK - II + I " K 
WORK(KK) WORKCKK) t YS * XCI, K) 

3750 CONTINUE 
WOIRK(II) - wORK(II) + It0 + YS ** 2 
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GOTO 25.1 

5910 If CIPT * 3) 2100t 2600, 2306 

C OBSERVATION CENSORED FRON ABOVE * LOWER BOUND KNOWN 
C 
2555 CALL RHILLCYS,t F, RLIMIT) 

TEMP F * tF * YB) 
GOTO 2150 

C 
C OBSERVATION CENSORED FROM BELOW * UPPER SOUND KNOWN 
C 
2350 CALL RMILLStCYs, F, RLIMIT) 

TEMP a f * CF + Y3) 
C 
C ROUTINE FOR CEN0ORED OBSERVATIONS 
C 
2158 Po 2190 K I t, M 

0D 2170 J t, K 
ii: Ji + I 
WORK(JJ) WORK(CJ) + XCIt J) * XCI, K) * TEMP 

2170 CONTINUE 
KK Z II 4 I - K 
WORK(KK) - WORKCKK) + YB * XCI, K) * TEMP 

2190 CONTINUE 
WORKCII) = WORKCII) t YB ** 2 * TEMP 
GOTO 2508 

C 
C 0BERVATION CONFINED BETWEEN TWO FINITE LI"ITS 
C 
2300 YN - VXPC.8, * YS ** 2) * C 

CALL RMILLSCYB, F, RLIMIT) 
YB YN / F 
YSU YS + CY2CI) * YMlI)) / XSIG 
CALL RMILL3SYSU, FU, RLIMIT) 
YNU - 9XPC05 * YSU ** 2) * C 
YOU - YNU / FU 
TINT YQ a YOU 
A C CYN - YNU) / T1NT 
B - (YNU * YOU - YN * YB) / TINT 
TEmP c A ** 2 + B 
Do 2.350 K -, M 
DO 2430 J 1t K 
;J 44 J* 4 
WORKCJJ) WORKCJJ) 4 XCI, J) * XCI K) * TEMP 

2330 CONTINUe 
TEMP =YB ** 2 * YN * YSU ** 2 * YNU) , TINT 
KK II 1 K 
MORK(KK) - WORKCKK) a (TEMP 4 A * B) * XCI, K) 

4359 CONTINUE 
TEMP C CYS ** 3 * YN a YOU ** 3 * YNU) / TINT 
WORK(II- WORK(CI) a TEMP + B ** 2 

2500 CONTINUE 

c INVERT THE MATR1X 

CALL SYMINV(WORK, MPLONE, VCOV, N, NUL, LENWRK, 
* LENWRK, LENW, IFAULT) 
IF (IFAULT *EO Bt ,AND, NUL *EO, 0) GOTO 2550 
VCOV(2) 9 IFAULT 
VCOV () _ NUL 
IFAULT -6 
RETIURN 

C 
C RR3TORE ITERATION COUNTER 

2550 IFAULT - 2J 
C 
C MULTIPLY BY SIGHA-SQUARED 

TEMP v XSIG ** 2 
DO 2580 1 c 1t It 

2580 VCOYI) C VCOVCI) * TEMP 
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C UNPACK THE MATRIX 
C 

CALL UNPACK tVCOV, MPLONEe LENWRK) 
RETURN 
END 

C 
SUBROUTINE UNPACKCX, N, LENX) 

C 
c C ALGORITHM AS 139.1 APPL. STATIST, C1979) VOLs28p NOs2 

C TilS3 SUBROUTINE EXPANDS A SYMMETRIC MATRIX STORED IN LOWER 
C 'IRIANULAR FORM IN THE FIRST N*CN+1)/2 POSITIONS Of X 
c INTO A MATRIX USING THE FIRST N*N POSITIONS 
C 
C LENX * THE LENGTH OF VECTOR X - MUST BE NOT LESS THAN N*N 
C 

DIMENSION XCLENX) 
NSO N * N 
II NSQ 
JJ N * (N + 1) / 2 

C 
C STORC LAST ROW 
C 

DO 10 I 1t N 
XCII) XCJJ) 
XII II - l 
JJ3 33 - I 

10 CONTINUE 
00 80 1 2, N 

C 
C QOTAIN UPPER PART OF MATRIX FROM PART ALREADY SHIFTED 
C 

14 ; I - 1 
KK N3Q + I a I 
D0 50 J -, t 3 
X(lI) XCKK) 
II II - 1 
KK - K K N 

54 CONTINUE 
C 
C OBTAIN LOWER PART OF MATRIX FROM 
C URIGINAL TRIANGULAR STORAGE 
C 

IJ - N * IJ 
DO 70 4 : 1, 4J 
XCII) * XCJJ) 
II =II * I 
jj 34 * a 

70 CONTINUE 
80 CONTINUE 

RETURN 
END 

Algorithm AS 140 

Clustering the Nodes of a Directed Graph 
By GARY W. OEHLERTt 

Yale University 
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t Development of this algorithm was partially supported by National Science Foundation Grant 
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